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Summary: Object detection is a fundamental computer vision task that plays a crucial role in a wide
range of real-world applications. However, it is still a challenging task to detect the small size objects
in the complex scene, due to the low resolution and noisy representation appearance caused by occlusion,
distant depth view, etc. To tackle this issue, a novel transformer architecture, Dual-Key Transformer
Network (DKTNet), is proposed in this paper. To improve the feature attention ability, the coherence of
linear layer outputs Q and V are enhanced by a dual-K integrated from K1 and K2, which are computed
along Q and V, respectively. Instead of spatial-wise attention, channel-wise self-attention mechanism is
adopted to promote the important feature channels and suppress the confusing ones. Moreover, 2D and
1D convolution computations for Q, K and V are proposed. Compared with the fully-connected computa-
tion in conventional transformer architectures, the 2D convolution can better capture local details and
global contextual information, and the 1D convolution can reduce network complexity significantly.
Experimental evaluation is conducted on both general and small object detection datasets. The superior-
ity of the aforementioned features in our proposed approach is demonstrated with the comparison
against the state-of-the-art approaches.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, object detection has attracted great attention due to
its broad range of real-world applications, such as autonomous
driving [1–3], intelligent monitoring [4–7], virtual reality [8,9],
augmented reality [10–12], etc. With the rapid development of
deep learning techniques, two categories of object detection
approaches have been proposed in the literature, which are 1)
two-stage approaches based on region proposal network, such as
Faster R-CNN [13], and Cascade R-CNN [14], and 2) one-stage
approaches, such as SSD [15] and YOLO [16].

However, in the object detection field, small-size object detec-
tion in complex scenes is still a challenging task, which can be used
for pedestrian and traffic sign detection in autonomous driving
[17], helmet detection in industrial scenes [18,19], etc. Although
the aforementioned deep object detection approaches can achieve
remarkable performance in large object scenarios with high resolu-
tion and clear appearance, when they are applied to small object
scenarios, the discrimination is depressed by the low resolutions,
noisy representations, occlusions, and similar surrounding back-
ground, which will eventually cause misdetection or misrecogni-
tion. For example, as shown in Fig. 1(a), the occluded small-scale
object marked by the red box is missed detected by the previous
object detector, because its appearance and structure are
destroyed by the occlusion. Besides, as shown in Fig. 1(c), when
the object has a similar appearance to its surroundings, it will be
wrongly recognized by the previous object detector. Moreover, as
shown in Fig. 1(e), the small object with a distant depth view is
hard to be detected by the previous object detector because of its
low discrimination.

To address the above problems, in this paper, we introduce the
transformer architecture for small object detection. Instead of
directly incorporating the transformer architecture into the task
of small object detection, we propose a Dual-Key Transformer Net-
work (DKTNet) for small object detection. Specifically, to enhance
the correlation between Q (Query) and V (Value), we develop a
dual-key strategy to compute two keys, including one key along
with the Q stream and one key along with the V stream. The use
of different stream feature fusion allows the learning of different
dimensions of feature information and the adequate extraction of
target features. Different from the Swin transformer1 that com-
putes one key to connect Q and V, we compute two keys along with
[20], we
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Fig. 1. Problems for small object detection. Left column: the problems of the
previous object detectors, e:g., occlusion in (a), similar background in (c), and
distant depth view in (e); Right column: Results of the proposed method. It can be
seen that the problems of the previous methods can be well addressed by our
method.
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the Q stream and the V stream, respectively, which are further inte-
grated via addition to enhance the coherence between Q and V.
Besides, instead of computing spatial attention adopted in most of
transformer architectures, we compute the channel attention in
our proposed dual-key transformer, which helps to promote those
important channels of feature maps while suppressing whole con-
fusing ones. In addition, we maintain the original size and replace
the traditional fully-connection computation with the 2D convolu-
tion computation for Q, K, and V, which helps to preserve the local
context. Moreover, inspired by the 1D convolution computation for
tokens in natural language processing [21], we utilize 1D convolu-
tion to further replace 2D convolution for computing Q, K, and V
to learn the relation within the adjacent range of the single dimen-
sion feature map, which reduces network parameters and computa-
tion. As shown in Fig. 1, our method can well detect the multi-scale
objects and small-scale objects in various complex scenes, compared
to the other methods.

In summary, the original contributions of the paper are as
follows:

� A novel transformer architecture, Dual-Key Transformer Net-
work (DKTNet), is proposed for the task of small object detec-
tion in complex backgrounds. The integration of K1 and K2

constructs the dependence between Q and V, which improves
learning and characterisation of key features of the target.

� To avoid the local context loss caused by fully-connected layers,

we develop a 2D convolution to compute Q, Kdual and V in
MDKTA. In contrast to the fully-connected computation, the
2D convolution can preserve the local context for the
transformer.

� A 1D convolution is developed to further enhance computa-
tional efficiency. By reducing the number of unnecessary
reshaping operations, the 1D convolution can avoid the large-
30
scale tensors of input features. As shown in the ablation study,
with this significant reduction in computation complexity, the
detection performance can keep competitive without sacrifice.

� Extensive qualitative and quantitative experiments proves the
proposed dual-keys transformer achieves the state-of-the-art
performance of small object detection in GDUT, SHW1, SHW2
and also achieves the state-of-the-art performance of general
object detection in Pascal VOC 2007 datasets.

The rest of this paper is structured as follows. Section 2 succes-
sively summarises the related work from general object detection,
small object detection and transformer in computer vision aspects.
The proposed DKTNet method is presented in Section 3, where the
details of the proposed dual-key mechanism, 2D and 1D convolu-
tion computations, and adopted loss function are illustrated. The
experimental evaluation of the proposed method is conducted
with the comparison against conventional works, the performance
analysis is provided in Section 4, including an ablation study to
identify the contributions of each component in our proposed
method. Finally, the paper concludes in Section 5 with a discussion
of future work.
2. Related work

2.1. General object detection

Object Detection is one of the core research tasks in computer
vision, and its main task is to find the region of interest or target
in an image. Due to the different shapes, colors and poses of tar-
gets, the noise of imaging devices, the limitations of shooting
angles and ranges, and the complex background interference, gen-
eric target detection has been a challenging research task [22]. In
recent years, general object detection milestone framework can
be divided into two mainstream approaches. One is a two-stage
object detection algorithm, which obtains the region suggestion
frame by convolutional neural network. Faster R-CNN [13] pre-
dicted object scores and bounds with pooled features of proposed
regions. R-FCN [23] introduced position-sensitive score maps to
share the per-ROI feature computation to alleviate the contradic-
tion between translation invariance between object classification
and translation variability between object detection. Sparse R-
CNN [24] learned a fixed set of sparse candidates for region pro-
posal. Another is one-stage object detection algorithm, which
obtains the object classification and bounding box location directly
on feature maps. YOLOv5 [25] was a high-performance, general-
purpose target detection method that could perform both target
localization and target classification tasks in one time, with signif-
icant improvements in detection accuracy and speed compared to
previous versions. SSD [15] improved the one-stage detection with
various scales of multilayer features.
2.2. Small object detection

Small object detection has been a challenging computer vision
task, and existing detection algorithms have achieved good results
for large-scale targets, but the detection of small objects is still less
satisfactory. More and more methods have been proposed to
improve the accuracy of small object detection [26–28]. Based on
the Faster R-CNN, the researchers have made a number of
improvements. Cascade R-CNN [29], which was served as one of
the best single model detector, designed different regression nor-
malization factors to adjust the aptitude of regression term in dif-
ferent stages. Libra R-CNN [30] proposed to promote the regression
gradients from the accurate samples. The feature pyramid net-
works (FPN) [31] was proposed to solve the multi-scale problem
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in object detection. The image pyramid based approach used
images at different scales to detect objects at different scales, such
as small scale images to detect large scale objects and large scale
images to detect small scale objects. SNIP [32] normalized the gra-
dients from different object scales during training, such that the
whole detector was scale-specific. TridentNet [33] constructed a
parallel multi-branch architecture in which each branch shares
the same transformation parameters but with different receptive
fields. DSSD [34] upsampled the low-resolution features of SSD
by the transposed convolution in the decoder to increase the inter-
nal space. [35] employed an automated approach to find the best
data augmentation strategy for object detection. [36] proposed
top-down modulations (TDM) as a way to incorporate fine details
into the detection framework.
2.3. Transformer in computer vision

The successful application of Transformer [38] in natural lan-
guage processing had inspired its application for the computer
vision field. Vision Transformer (ViT) [39] was the first
Transformer-based method for image classification, which outper-
formed CNNs. ViT [39] sliced the image into 16*16 patches and
treated each patch as an output whole, and then used the Trans-
former architecture instead of the traditional CNN for global self-
attention. Later, Detection Transformer (DETR) [40] innovatively
treated target detection as an ensemble prediction problem, which
was solved by using encoders and target queries to encode features
and anchor frames, and then used decoders and Feed Forward Net-
works (FFNs) to obtain prediction frames and target classes.
Although the Transformer architecture could avoid the problems
of CNNs with limited receptive fields and maladaptive to the input
content, its computational complexity grew quadratically with the
spatial resolution. One of the latest approaches was Swin-
Transformer (ShiftedWindow Transformer) [20], which introduced
a moving-window-based multi-headed attention mechanism to
balance performance and efficiency. But its contextual aggregation
within local images against the main motivation of using self-
attentiveness.

To alleviate the inadequate image feature extraction and low
capability of small object feature extraction in conventional small
object detection approaches, 1) We propose a dual-key mechanism
for the transformer architecture by a dual-stream strategy, which
enhances the coherence between Q and V to improve feature
extraction; 2) We compute the channel attention instead of the
spatial attention to promote those important features while sup-
pressing those unimportant ones.
3. Methodology

The framework of the proposed DKTNet for small object detec-
tion is shown in Fig. 2. Faster R-CNN [13] is chosen as the baseline.
Specifically, the image is input into the backbone network, i:e.,
ResNet50 [41] and Feature Pyramid Network (FPN) [31], to extract
multi-scale target features, which are subsequently fed into the
dual-key Transformer for feature discrimination enhancement.
Subsequently, Region Proposal Network (RPN) is utilized to calcu-
late the foreground Region of Interest (RoI) and the first adjust-
ment of the target bounding box. Finally, the features obtained
from RPN are input into the RoI Align to achieve the RoI features,
which are mapped into feature vectors using the full connectivity.
The softmax [42] is used for classification and the target bounding
box regression model is used to refine the target position. In the
following, we will detail the core components of the proposed net-
work, including dual-key transformer and computation for Q, K,
and V.
31
3.1. Dual-key transformer

The procedure of the conventional Transformer based object
detection is the Multi-head Self-Attention (MSA), which is shown
in Fig. 3(a). The 2D image features Y 2 RC�H�W is flattened and
transposed t to Y0 2 RHW�C , which is used to compute the Q ;K
and V as

Q ¼ f WQ
ðY0Þ;K ¼ f WK

ðY0Þ;V ¼ f WV
ðY0Þ; ð1Þ

where fWQ
ð�Þ; f WK

ð�Þ; f WV
ð�Þ are three different linear

transformations.
Different from the traditional transformer-based object detec-

tion method, as shown in Fig. 3(b), the proposed dual-key trans-
former based object detection attention, i:e., Multi-head Dual-Key
Transposed Attention (MDKTA), is shown in Fig. 3(b), which con-
sists of three steps: two keys calculation, two keys integration,
and attention computation.

Step 1: Two keys calculation.
Given the transposed features Y0 2 RHW�C , two fully-connected

layers are employed to learn two streams of knowledge, i:e.,
Q ;K1 and K2;V. The procedure can be written by

ðQ ;K1Þ ¼ f chunkðf W1
F
ðY0ÞÞ; ð2Þ

ðK2;VÞ ¼ f chunkðf W2
F
ðY0ÞÞ; ð3Þ

where the f chunkð�Þ operation is used to compute the values of
Q ;K1;K2, and V. It can be implemented by the fully-connected lin-
ear computation. fWð�Þ

F
ð�Þ is the fully-connected linear operation.

Step 2: Two keys integration.
K1 and K2 are computed along the stream of Q and V, respec-

tively. Therefore, K1 and K2 contains the dependence with Q and
V, respectively. Therefore, the integration of K1 and K2 will con-
struct the dependence between Q and V. To this end, we integrate
K1 and K2 to achieve the final key values, i:e.,

Kdual ¼ K1 þ K2: ð4Þ
With respect the vectors of key values, the addition operation can
complement K1 and K2, and further enhance the coherence between
Q and V to improve learning and characterisation of key features of
the target, which will be verified in the section of Experiment, i:e.,
Section 4.

Step 3: Attention computation.
In hidden layers, there are feature maps with multiple channels.

Different channels of feature maps in essence contribute differ-
ently to the semantic understanding. Therefore, we apply the val-

ues of Q ;Kdual, and V to compute the channel-wise attention to
enhance the important channels while suppressing those confus-
ing channels. Specifically, considering the advantage of the multi-
head operation, we divide the number of feature channels into h
heads, each with c ¼ C=h channels, and learn separate attention
maps in parallel. To this end, we reshape Q and K projections such
that their dot-product interaction generates a channel-wise atten-
tion map with the shape of Rc�c; i:e.,

f AttentionðQ ;Kdual;VÞ ¼ VSoftmaxðK
dualQ
e

Þ; ð5Þ

where Q 2 RHW�C ;Kdual 2 RC�HW , and V 2 RHW�C matrices are
obtained after reshaping tensors from the original size Y0 2 RHW�C .
Here, e is a learnable scaling parameter to control the magnitude

of the dot product of Kdual and Q before applying the Softmax
function.

Based on the above procedure, the MDKTA process can be writ-
ten as:



Fig. 2. Framework of the proposed DKTNet for small object detection. ‘‘ResNet50 + FPN” are chosen as the backbone network to extract features of the input image, which are
fed into the proposed dual-key transformer to enhance the feature discrimination. On top of that, RPN and RoIAlign [37] are utilized to detect the objects.

Fig. 3. Difference between the conventional MSA and the proposed MDKTA. (a) denotes the conventional MSA, which uses three fully-connected layers to compute the Q, K
and V. (b) denotes the method MDKTA in this paper, which uses two fully-connected layers to compute the Q, Kdual and V. The usage of different stream feature fusion
enhances the coherence between Q stream and V stream which improves feature extraction to obtain more discriminative object features.
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Ŷ ¼ f Wp
ðf AttentionðQ ;Kdual;VÞÞ þ Y; ð6Þ

where Ŷ and Y are the output and input feature maps, f Wp
ð�Þ is the

1x1 2D convolution operation.
As pointed out by conventional works, the Feed-Forward Net-

work (FFN) in the standard Transformer presents limited capability
to leverage local context. However, neighboring pixels are crucial
references for object detection. To overcome this issue, as shown
in Fig. 4, we use 1 � 1 two dimension convolution to capture local
information, which is followed by the GELU as the activation func-
tion to implement the Feed-Forward Network (FFN), i:e.,

f FFNðf LNðŶÞÞ ¼ f W0
p
ðhðf W1

p
ðf LNðŶÞÞÞ � f W2

p
ðf LNðŶÞÞÞ þ Ŷ; ð7Þ

where hrepresents the activation function of GELU, �denotes
element-wise multiplication. f LNð�Þ is the layer normalization oper-
ation [43]. f Wð�Þ

p
ð�Þ is the 1x1 two dimension convolution operation.
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3.2. Convolutional computation for Q, Kdual and V

In this section, the details of 2D and 1D convolutions based on
MDKTA are provided, successively.

2D convolution based MDKTA. The computation of Q, K, and V
in the Transformer attention mechanism follows the processing
method in the natural language task, in which the usage of fully-
connected layers may cause some local context lost. To this end,
we apply the convolutional computation to substitute for the
fully-connected computation with the aim of preserving local con-
text. Specifically, as shown in Fig. 5(a), the tensor of 2D image fea-
tures is first normalized. The 2D convolution with the kernel of 1x1
is used to compute the Q ;K1;K2, and V; i:e.,

ðQ ;K1Þ ¼ f chunkðf W1
2D
ðY0ÞÞ; ð8Þ

ðK2;VÞ ¼ f chunkðf W2
2D
ðY0ÞÞ: ð9Þ



Fig. 4. Structure of Feed-forward Network (FFN). We use 2D convolution to capture the local information of the image, which solves the limitation of conventional
transformer for local content acquisition.

Fig. 5. Two convolutional computations of the Q, K1;K2 and V. (a) shows the MDKTA, which uses 2D convolution to capture local information. (b) shows the MDKTA, which
uses 1D convolution to compute the knowledge of Q, K1;K2 and V. The convolutional computation can capture the local context in feature layers, which is more effective than
the fully connected computation. The 1D convolutional computation is further adopted to reduce the computational complexity while maintaining the performance.
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On top of that, the Q ;Kdual, and V can be obtained by Eq. (4). where
f Wð�Þ

2D
ð�Þ is the 1x1 two-dimensional convolution,Y0 is the tensor

obtained after Layer Normalization [43].
1D convolution based MDKTA. It is well noticed that the above

2D convolution based computation still encounters large comput-
ing complexity is caused by the large-scale tensors of input fea-
tures. To further enhance the computational efficiency, similar to
the tokens in natural language processing, we apply the 1D convo-
lution to compute the knowledge of Q ;K1;K2, and V. As shown in
Fig. 5(b), the 1D convolution is applied to compute the values of
Q ;K1;K2, and V; i:e.,

ðQ ;K1Þ ¼ f chunkðf W1
1D
ðY0ÞÞ; ð10Þ

ðK2;VÞ ¼ f chunkðf W2
1D
ðY0ÞÞ; ð11Þ

where f Wð�Þ
1D
ð�Þ is the 1x1 single dimension convolution operation,

and Y0 is the tensor Y0 2 RHW�C that becomes to the tensor after
the layer normalization is performed by the reshaping substitution.

It is proved that 1D convolution achieves the competitive per-
formance while saving the unnecessary reshaping operations,
which can be verified in the ablation study.

Different to the conventional transformer attention. The dif-
ference between our proposed transformer attention and the con-
ventional transformer attention lies in three folds. First, instead of
the one key computation adopted by the conventional transformer,
we compute two keys to enhance the correlation between Q and V,
which further improves the attention performance. Secondly, dif-
ferent from the spatial attention map adopted by the conventional
33
transformer, we compute the channel-wise global self-attention
map rather than traditional spatial-wise attention map. In Faster
R-CNN architecture, the FPN already efficiently captures the
multi-scale feature dependency at the 2D spatial level, but it is dif-
ficult to capture feature dependency at the channel level. To this
end, our proposed channel-wise transformer attention is able to
handle this problem. Thirdly, instead of adopting the heavy fully-
connected layers for computation, we apply convolutional compu-
tation to preserve the local context. Notably, the 1D convolutional
computation is further adopted to reduce the computational com-
plexity while maintaining the performance.

3.3. Loss function

Similar to Faster R-CNN [13], we apply two loss functions to
jointly train out network, i:e., Eq. (12), including LRPN for the RPN
output classification results and the initial adjustment of the target
location, and LRoI for the refinement of the target location using
Softmax classification and the target frame regression model. The
expression of LRPN can be written as follows.

Ltotal ¼ LRPN þ LRoI: ð12Þ

LRPNðfpig; ftigÞ ¼
1
Ncls

X
i

Lclsðpi;p
0
iÞ þ k

1
Nreg

p0
iLregðti; t0iÞ: ð13Þ

Specifically, the binary cross-entropy loss function can be writ-
ten as follows,

Lclsðpi;p
0
iÞ ¼ � log½pip

0
i þ ð1� piÞð1� p0

iÞ�; ð14Þ
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where i denotes the index of the anchor frame. pi denotes the prob-
ability of the i� th anchor frame being the foreground target. p0

i

denotes the label of the i� th anchor frame with only 0 (negative
label) and 1 (positive label).

The bounding box regression loss function can be written as
follows.

Lreg ¼
XN
i

0:5ðti � t0iÞ2; jti � t0ij < 1
jti � t0ij � 0:5; jti � t0ij P 1;

(
ð15Þ

where ti represents the predicted target bounding box parameter
vector, and t0i represents the calibrated target bounding box param-
eter vector of p0

i ¼ 1.
After obtaining the RoI feature vector, a Softmax function is

used for multi-objective classification and the target box position
is refined using a bounding box regression algorithm with the fol-
lowing loss function.

LRoIðp;u; tu; vÞ ¼ Lclsðp;uÞ þ k½u P 1�Lregðtu; vÞ; ð16Þ
where Lclsðp; uÞ ¼ � log pu is the classification loss function. u is the
true class label corresponding to the current candidate frame, and
pu is the probability vector p of the output of the Softmax classifier
belonging to class u. Lregðtu;vÞ denotes the target frame regression
loss using the SmoothL1 [44] function, in which tu denotes the
parameter vector of the translation scaling transformation corre-
sponding to this candidate frame to the true frame. v denotes the
parameter vector obtained from the network calculation. The value
of kis 1 when the category label ½u P 1� is ½u P 1�, otherwise it is 0.

4. Experimental evaluation and analysis

In this section, we conduct extensive experiments to verify the
effectiveness and superiority of the proposed method. We first
evaluate our method on the challenging general object detection
benchmark, i:e., PASCAL VOC 2007 [45]. Secondly, to evaluate our
method for the task of small object detection, we choose three
challenging safety helmet wearing datasets, including GDUT [46],
SHW1 [47], and SHW2 [48], selected from real construction scenes,
in which most of the target safety helmets occupy small areas in
the images.

4.1. Datasets and evaluation metrics

4.1.1. Datasets
PASCAL VOC2007 [45]: contains 9973 images including 20 cat-

egories, in which the challenging classes (e:g., bottle, chair, and
boat) are small instances that are common in the real life.

GDUT [46]: 3,174 images in GDUT cover various view ranges,
diverse operation scenarios, complex postures of workers and hel-
met coverings, etc. 1,587 images are split for testing, and another
1,587 images are used for training. These images are divided into
five categories (red, yellow, white, blue and none) of 18,893
instances, and consist of three-scale objects, including small target
(area 6 32� 32pixels), medium target
(32� 32pixels 6 area 6 96� 96pixels), and large target
(area > 96� 96pixels).

SHW1 [47]: The original SHW1 dataset contains six categories
including (man, head, face, person with helmet, person no helmet,
head with helmet), with a total of 75,578 tags. In this paper, this
dataset is divided into a training set, a test set and a validation
set according to 8:1:1.

SHW2 [48]: The SHW2 dataset contains 7,581 images including
two categories (hat and person), and 9,044 markers for helmet
wearers and 111,514 head markers for non-helmet wearers. SHWS
can be directly loaded into normal PASCAL VOC format for training
and testing.
34



S. Xu, J. Gu, Y. Hua et al. Neurocomputing 525 (2023) 29–41
4.1.2. Evaluation metrics
In the experiment, Precision(P), Recall(R) and Average Precision

(AP) and Mean Average Accuracy (mAP) are used as performance
evaluation metrics. Precision is defined as the ratio of the number
of actual positive samples to the number of all positive samples in
the prediction sample, and is used to evaluate the accuracy of the
model. P can be computed by

P ¼ TP
TP þ FP

; ð17Þ

where TP indicates that the true case is a positive case and the pre-
dicted case is also a positive case, and FP indicates that the true case
is a negative case and the predicted case is a positive case.

The recall rate, i:e., the check-all rate, is defined as the ratio of
the actual number of positive samples in the predicted samples
to the number of predicted samples, and is used to assess the com-
prehensiveness of the model detection. R can computed by

R ¼ TP
TP þ FN

; ð18Þ

where FN indicates that the true case is a positive case and the pre-
dicted case is a negative case.

The average precision (AP) is defined as the area enclosed by the
precision, recall and axes. AP can be computed by

AP ¼
Z 1

0
PðxÞdx; ð19Þ

where P(x) in Eq. (19) indicates the smoothed precision and recall
curves.

The AP for each category is summed and divided by the number
of categories to calculate the mAP, i:e.,

mAP ¼

Xc

i¼1

APi

c
; ð20Þ

where c denotes the number of categories, and APi denotes the
average precision rate of the ith category.

In the experiment, mAP50 and mAP are used as evaluation met-
rics to evaluate the effectiveness of the model. mAP50 takes IoU of
0.5 and calculates the mean AP under IoU = 0.5. mAP takes IoU
between 0.5 and 0.95 with a step size of 5% and calculates mAP
under these IoUs. mAPL, mAPM , mAPS represent mAP (IoU = 0.5)
of different-size targets.
Table 2
Performance comparison with existing target detection methods on Safety Helmet Weari
underlined.

Metrics YOLOv3 [16] SSD [15] Faster R-CNN [13]

GDUT [46] mAP50 76.78 72.64 82.5

mAP 48.46 46.4 43.8

mAPL 64.8 62.7 64.8

mAPM 47.9 44.8 59.9

mAPS 35.5 36.7 39.3

SHW1 [47] mAP50 78.53 63.8 82.0

mAP 42.63 30.67 49.8

mAPL 59.3 44.4 63.5

mAPM 45.9 32.5 59.6

mAPS 27.2 18.3 32.7

SHW2 [48] mAP50 84.43 85.22 85.0

mAP 54.3 52.79 54.1

mAPL 65.8 67.5 71.1

mAPM 58.4 54.9 59.7

mAPS 32.0 31.4 37.6
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4.2. Implementation details

In this paper, we use the Pytorch platform [59] and one GPU for
accelerated computing on a computer with an Intel(R) Core(TM)
i7-6800 K CPU @ 3.40GHzTITAN-XP processor and 12G of RAM.

For fair comparisons, all of the datasets use the same training
settings for all the methods. The network is trained with the batch
size of 2 for 20 epochs. We apply normalization and randomly crop
for data augmentation. SGD [60] optimizer is used with weight
decay of 5� 10�4. The learning rate is initially set to 5� 10�3

and decreases by the factor of 0.33 every 3 epochs. The momentum
is set to 0.9.

To illustrate the performance superiority of our proposed meth-
ods (DKT_Conv1D and DKT_Conv2D), extensive experiments are
conducted for both general and small object detection tasks, with
the comparison of numerous conventional methods on different
datasets. DKT_1D in Tables 1 and 2 indicates that DKT is calculated
using 1D convolution (DKT_Conv1D). DKT_2D indicates that DKT is
calculated using 2D convolution (DKT_Conv2D).

4.3. Results on general object detection

In order to prove the generalization and performance of the pro-
posed method, we compare the proposed method with several
object detectors on the PASCAL VOC2007 test set for general object
detection. As shown in Table 1, our proposed method DKT_Conv2D
is compared with 15 state-of-the-art methods, which shows that
the DKT_Conv2D achieves the best performance in 14 out of 20
object categories. It proves the superiority of DKT_Conv2D. The
detection effect of DKT_Conv1D is superior to that of DKT_Conv2D,
which also shows that the move from 2D to 1D is a positive explo-
ration process. It can be concluded from Table 1 that the DKT_Con-
v1D surpasses all other methods with the best performance in 12
of 20 categories. For classes that occupy a major area in the image,
such as airlines, bicycles, horses and trains, the DKT_Conv1D in this
paper obtains a significant boost of 4% - 14% compared to the
benchmark Faster R-CNN. For some medium objects, such as boats,
tables and chairs, the method in this paper has a boost of about 7%
- 15% compared to the benchmark model Faster R-CNN. For some
small targets, such as bottles, chairs and plants, our model shows a
significant improvement of 14% - 25% over the benchmark Faster
R-CNN. As can be seen from the table above, the performance of
our method for target detection is optimal in many categories
and outperforms most other object detection algorithms.
ng Datasets. The best results are highlighted in bold and the second best results are

YOLOv5 [25] Sparse R-CNN [58] Ours (DKT_2D) Ours (DKT_1D)

85.9 86.7 88.2 88.3

54.9 55.2 58.6 58.8

69.0 71.7 72 72.8

64.2 66.0 69.9 67.7
43.4 45.3 47.4 47.6

84.7 78.0 87.7 88

51.6 46.5 53.8 53.6

64.3 62.4 65.3 62.4

60.9 58.8 61.8 62.2

34 32.1 36.1 37.0

86.3 81.7 92.8 91.4

55.2 46.4 59.3 59.3

71.0 68.5 74.7 74.8

60.2 59.0 65.3 65.3

38.6 36.7 39.5 43.8
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Fig. 6 shows the detection results of different methods. The top
three rows of Fig. 6 illustrates YOLOv3, SSD, and Faster R-CNN tend
to dismiss some tiny objects, while the DKT_Conv1D is more gen-
eralized and robust to detect both big objects and tiny objects. As
shown in the bottom three rows the compared methods mostly
produce errors when recognizing the objects. In contrast, our
method is capable of extracting more identified features and out-
put more faithful recognition results.

4.4. Results on small object detection

We have chosen Safety Helmet Wearing Detection, one of the
fundamental research hotspots in industrial safety, to study the
effectiveness of our method on small object detection. We evaluate
our model on GDUT [46], SHW1 [47], and SHW2 [48], in which the
safety helmets occupy small areas in the images. As shown in
Fig. 6. Visual results of different methods on PASCAL VOC2007 [45]. We use Dual-K

36
Table 2, DKT_Conv2D achieves the best detection performance
compared to all five conventional methods on three datasets, and
DKT_Conv1D further improves the detection performance on top
of DKT_Conv2D. This is owing to the fact that the 1D convolutional
computation computes the tokens for significant flexibility and
universality, which helps for performance improvements.

4.4.1. Results on GDUT [46]
The results in Table 2 demonstrate our methods perform consis-

tently better than other methods. Specifically, DKT_Conv1D
achieves 88:3% mAP50 and 55:8% mAP on the GDUT. We can
notice that the mAP50 of DKT_Conv1D exceeds Faster R-
CNN + STL (Swin Transformer) by 1%, exceeds Spares R-CNN by
1:6%, exceeds YOLOv3 by 11:2%, and exceeds SSD by 15:36%. Com-
pared with several other methods, the mAP of DKT_Conv1D also
exceeds them a lot.
ey Transformer Network for PASCAL VOC2007 to better distinguish the objects.
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Fig. 7(a) shows that YOLOv3 mistakenly detects a helmet on the
table as a helmet worn on the head. And Fig. 7(b) illustrates that
SSD fail to handle the crowed scenarios and dismissing more hel-
mets. The DKT_Conv1D can solve these two problems comparing
to YOLOv3 and SSD. Although the visualization of Faster R-CNN
performs better in Fig. 7. DKT_Conv1D has larger confidence for
the detection of the occluded dense targets.
4.4.2. Results on SHW1 [47]
As shown from Table 2, the mAP50 of DKT_Conv1D on SHW1 is

the highest reaching 88%, and the mAP is also the highest reaching
53:6%. As shown in the middle two rows of Fig. 8, YOLOv3 [16],
SSD [15], and Faster R-CNN [13] performs not that well for the
small helmets in complex scenes, e:g., snowy weather, the indoor
Fig. 7. Visual results of different methods on GDUT [46], SHW1 [47] and SHW2 [48]. Fro
method in this paper have achieved the best performance.

37
with many stripes and different directions, and distant views. In
contrast, DKT_Conv1D can deal with these problems.
4.4.3. Results on SHW2 [48]
Table 2 illustrates a quantitative comparison between conven-

tional methods and ours on SHW2. Specifically, the mAP50 of
DKT_Conv1D exceeds Faster R-CNN + STL by 1:9%, exceeds YOLOv5
by 5:1%, exceeds SSD by 6:18%. We notice that the mAP of
DKT_Conv1D exceeds Faster R-CNN + STL by 2:4%, exceeds YOLOv5
by 5:2%, and exceeds SSD by 6:51%. The improvements shows that
DKT_Conv1D is feasible.

As shown in Fig. 7, the other methods mostly fail to detect the
distant objects (the fifth row of Fig. 7) or miss some objects for
dense target objects (the bottom row of Fig. 7). In contrast,
m the visualization, it can be seen that the detection results and confidence of the



Fig. 8. Partial visual images improved by our method in each module of safety helmet dataset. Each column represents the visualization of a method. Through observation, it
can be seen that our method has the highest detection accuracy and the better wholeness in complex environment.
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DKT_Conv1D can detect all the small helmets with promising con-
fidence scores.
4.5. Ablation studies

In this subsection, we will discuss the roles of the important
components of the proposed network.
4.5.1. Transformer for object detection
To probe into the role of the transformer adopted in our net-

work for object detection, we compare two baselines, including
Faster R-CNN and Faster R-CNN + STL. As shown in the two col-
umns of Table 3, the transformer architecture can improve the per-
formance by strengthening the representation ability of the feature
layers. Besides, as shown in the first two columns of Fig. 8, with the
involvement of Transformer, some missed small helmets can be
recognized, which is owing to the feature discrimination enhance-
ment achieved by the transformer.
Table 3
Ablation experiments of Faster R-CNN vs. Faster R-CNN + STL on Safety Helmet
Wearing Datasets. The best results are highlighted in bold.

Dataset Metrics Faster R-CNN Faster R-CNN + STL

GDUT [46] mAP50 82.5 87.3
mAP 43.8 57.7
mAPL 64.8 72.4
mAPM 59.9 66.7
mAPS 39.3 46

SHW1 [47] mAP50 82 87
mAP 49.8 52.3
mAPL 63.5 65.3
mAPM 59.6 61.8
mAPS 32.7 36.1

SHW2 [48] mAP50 85 89.5
mAP 54.1 56.9
mAPL 71.1 73.3
mAPM 59.7 64.6
mAPS 37.6 39.6
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4.5.2. Dual-key strategy
To illustrate the role the dual-key strategy in the transformer,

we compare two modified versions, including Faster R-
CNN + Swin Transformer and Faster R-CNN + Swin Trans-
former + DKs. The performance comparison can be seen in the sec-
ond and third rows of Table 4. It is apparent that the dual-key
strategy improves the performance. Besides, as displayed in the
second and third columns of Fig. 8, the confidence coefficient of
safety helmet in dark scenes has been greatly improved by the
dual-key strategy, which thanks to the dual-key strategy that
enhances the coherence between Q and V to extract more discrim-
inatory features. As shown in the second and third columns of
Fig. 9, the detection effect after using dual keys is more remarkable
than that calculated by one key from the feature maps. Specifically,
the usage of dual keys can reduce the interference of the back-
ground on the detection target with more discriminative features,
which helps to improve the detection accuracy.

In our network, we transpose the feature map to calculate the
global self-attention in channel dimension rather than spacial
dimension. To study the superiority of the channel attention over
the spatial attention, we compare two versions, including Faster
R-CNN + Swin Transformer + DKs with Faster R-
CNN + DKT_linear. It can be found in Table 4 that the channel-
wise self-attention achieves some performance gains than the
spatial-wise self-attention. Besides, as shown in the third and
fourth columns of Fig. 8, the confidence scores can be improved
by the channel-wise self-attention, compared to the spatial-wise
Table 4
Results of ablation experiments on PASCAL VOC2007. The best results are highlighted
in bold and the second best results are underlined.

Backbone mAP50 mAp mAPL mAPM mAPS

Resnet50 78.8 47.8 44.3 32.7 24.7
Resnet50 + STL 82.7 51.3 54.9 41.4 27.4
Resnet50 + STL_DKs 82.9 51.3 54.7 41.9 29.2
Resnet50 + DKT_linear 83.1 52.0 55.5 42.0 31.9
Resnet50 + DKT_Conv2D 84.7 54.3 58.2 44.1 31.7

Resnet50 + DKT_Conv1D 85.1 54.5 58.4 44.5 33.4



Fig. 9. Feature map visualization image of our method in the safety helmet dataset. The redder the color of the region in the image indicates the more attention the region
receives.
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attention architecture. As can be seen in the third and fourth col-
umns of Fig. 9, using channel-wise attention to capture features
is significantly more effective than spatial-wise attention.

4.5.3. Convolutional computation
To take insight into the convolutional computation for Q, K, and

V, we compare the 2D/1D convolution based transformer and the
fully-connected transformer. It can be found from the fourth row
and the fifth row of Table 4 that the 2D convolutional computation
can achieve the competitive performance. mAPL, mAPM , mAPS rep-
resent mAP (IoU = 0.5) of the best and the second-best results are
highlighted and underlined. This improvement thanks to that the
convolutional computation can capture the local context in feature
layers. Besides, as illustrated in the fourth and fifth columns of
Fig. 8, the 2D convolutional computation improves the detection
confidence of small helmets than the conventional fully-
connected computation manner.

To take deep insight into the convolutional computation, we
comparing the bottom two rows of Table 4. It can be found that
the 1D convolutional computation surpasses the 2D convolutional
computation. With the same image size 640 � 640, the parameters
number and FLOPS of Conv1D and Conv2D are listed as: Conv1D vs.
Conv2D: 45.39 M vs. 56.16 M (Parameters) and 167.38G vs.
285.18G (FLOPS). It can be seen that Conv1D reduces the number
of parameters and FLOPS by 10.77 M and 117.8GFLOPS, respec-
tively, compared to Conv2D, which confirms that the Conv1D
decreases the computation complexity significantly with respect
to Conv2D without detection performance being sacrificed. As
shown in the last two columns of Fig. 8, the 1D convolutional com-
putation finds all the helmets compared to the 2D convolutional
computation. This is owing to the fact that the the 1D convolu-
tional computation computes the tokens for significant flexibility
and universality, which helps for performance improvements. As
shown in the last two columns of Fig. 9, using Conv1D to compute
the feature map information is least affected by the background
and most accurate for the target focus, thus improving the detec-
tion of small targets.
5. Conclusion

In the paper, transformer architecture DKTNet is proposed for
the small object detection. Specifically, instead of directly embed-
ding the transformer, we proposed a dual-key strategy to enhance
the correlation between Q and V, which further improves the fea-
39
ture discrimination for most objects. Besides, to promote the
important channels of features, we computed the channel atten-
tion instead of spatial attention in the transformer architecture.
Moreover, in order to preserve the local context, we utilized the
convolutional computation to substitute for the fully-connected
computation for Q, K, and V in the transformer architecture. In
the future, we will study robust deep learning [61] and part-
whole relational saliency [62,63] to improve the robustness of
our framework for various real-world scenes.
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